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Abstract. Basic general properties are considered for the Fisher-type information involving
higher order derivatives. They are used to explore various properties of probability densities
and derive Stam-type inequalities.

1. Introduction

Given a random variable X with an absolutely continuous density f , the Fisher information
hidden in the distribution of X is defined by

I(X) = E ρ(X)2 =

∫ ∞
−∞

f ′(x)2

f(x)
dx, (1.1)

where the integration may be restricted to the set of points where f(x) > 0. Here, ρ = f ′/f
represents the logarithmic derivative of f , which is also called the score function (often being
taken with the minus sign). Since f(X) > 0 almost surely, the random variable ρ(X), called
the score of X, is well-defined and finite with probability one.

The functional (1.1) has two natural generalizations motivated by various problems in
different fields. In particular, one is interested in the behaviour of absolute moments of the
scores

Ip(X) = E |ρ(X)|p =

∫ ∞
−∞

|f ′(x)|p

f(x)p−1
dx, p ≥ 1. (1.2)

As a partial case, the first absolute moment I1(X) = ‖f‖TV describes the total variation norm
of the density function f . Another closely related functional defined for positive integers p is

I(p)(X) = E ρp(X)2 =

∫
f(x)>0

f (p)(x)2

f(x)
dx. (1.3)

Here ρp = f (p)/f may be viewed as the “p-th order” score function.
These functionals were introduced by Lions and Toscani [10] in their study of convergence of

densities (and of their powers) in Sobolev spaces towards the central limit theorem. Previously,
the functional I4 was also considered by Gabetta [7] in the context of the kinetic theory of
gases to study the convergence to equilibrium in Kac’s model. In paper [2], the moments of
the scores together with exponential and Gaussian moments of ρ(X) appear with the aim to
control the translates of product probability measures. See also [3] and [4] for various upper
bounds on the Fisher information and moments of the scores.
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The quantity I(p)(X) may be called the Fisher(-type) information of order p. Denote by Cp

the collection of all continuous functions f on the real line which have continuous derivatives
up to order p − 1, such that f (p−1) is (locally) absolutely continuous. We denote by f (p) a

Radon-Nikodym derivative of f (p−1) which is defined and finite almost everywhere.

Definition 1.1. If the random variable X has a density f from the class Cp for an integer
p ≥ 1, the Fisher information I(p)(X) = I(p)(f) of order p is defined by (1.3). In all other

cases, put I(p)(X) =∞.

Since f (0) = f , it is natural to put I(0)(X) = 1.

In this paper we explore general properties of the functional I(p)(X) and its relationship to
various properties of densities f . Many of them extend and sharpen corresponding properties
obtained under the hypothesis that the classical Fisher information I(X) is finite. These
properties include the integrability of the first p derivatives of f and assertions about their
decay at infinity under moment assumptions posed on X. This will allow us to consider
the relative Fisher-type information with respect to the standard normal distribution and to
prove, for example, the following comparison. In the sequel, we use the notation Z ∼ N(a, σ2)
for the case where the random variable Z is normal with mean a and variance σ2.

Theorem 1.2. Let I(p)(X) be finite for an integer p ≥ 1. Then, for Z ∼ N(0, 1),

EHp(X)2 = EHp(Z)2 ⇒ I(p)(X) ≥ I(p)(Z). (1.4)

Here and below Hp denotes the Chebyshev-Hermite polynomial of degree p with a leading
coefficient 1 (let us note that the moment EX2p should be finite as well). In the case p = 1,
(1.4) recovers a well-known statement that the Fisher information I(X) is minimized for the
normal distribution when the variance is fixed.

One interesting question which we partly address is: How can one compare I(p)(X) for
different p? For example, in the case of moments of the scores defined as in (1.2), the Lp-norms

p→ Ip(X)1/p are non-decreasing. However, it may occur that the Fisher-type information is

finite for a given odd order p ≥ 3, while I(q)(X) are infinite for all even q < p (cf. Example 2.5
below). Nevertheless, using the so-called isoperimetric profiles, one can derive the following
relations for the case p = 2.

Theorem 1.3. For any random variable X,

I(2)(X) ≥ 1

3
I4(X) ≥ 1

3
I(X)2. (1.5)

Thus, the finiteness of I(2)(X) guarantees the finiteness of the usual Fisher information.
Part of the proof of Theorem 1.3 is based on the lower semi-continuity of the Fisher-

type information with respect to the weak convergence, as well as on the convexity of this
functional in the space of probability distributions on the real line. These two important
properties reduce many relations such as (1.5) to the case where X has a C∞-smooth positive
density, by means of the following continuity property.
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Theorem 1.4. For all independent random variables X and Z,

lim
ε→0

I(p)(X + εZ) = I(p)(X). (1.6)

In particular, if the distribution of X is not absolutely continuous, then I(p)(X+εZ)→∞
regardless of whether or not Z has a smooth density.

If Z ∼ N(0, 1), then I(p)(X + εZ) is finite for any ε > 0, and the convergence in (1.6)

is monotone in ε. Hence, this equality may be taken as an equivalent definition of I(p)(X),
which was actually proposed in [10].

The property (1.6) can be also used to study in full generality various generalizations of
the classical Stam inequality ([11], [6], [8])

1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
. (1.7)

In particular, we have:

Theorem 1.5. Given independent random variables X and Y , for all k = 1, . . . , p − 1,
p ≥ 2,

1

I(p)(X + Y )
≥ 1

I(p)(X)
+

1

I(p)(Y )
+

1

I(k)(X)I(p−k)(Y )
. (1.8)

In the case p = 2, the family (1.8) contains only one inequality, in which an equality is
attained for the class of normal distributions similarly to (1.7).

Thus, (1.7) is satisfied for all I(p) in place of I. Another immediate consequence of (1.8)

is that the finiteness of I(k)(X) and I(p−k)(Y ) with 1 ≤ k ≤ p− 1 guarantees the finiteness of

I(p)(X + Y ) in view of the following immediate consequence from (1.8)

I(p)(X + Y ) ≤ I(k)(X)I(p−k)(Y ).

By induction, it also follows that

I(p)(X1 + · · ·+Xp) ≤ I(X1) . . . I(Xp)

whenever the random variables X1, . . . , Xp are independent. In this connection, let us recall
that the convolution of 3 probability densities with a finite total variation norm has a finite
Fisher information ([4, 5]). Hence, the sum of 3p independent random variables whose densities
are functions of bounded total variation has a finite Fisher-type information of order p.

In the proof of (1.8), we follow the argument by Lions and Toscani [10]. However, in

Lemma 2.3 they mistakenly state a Stam-type inequality for the functional I(p) as a sharper
relation

I(p)(X + Y ) ≤
p∑

k=0

α2
k I

(k)(X)I(p−k)(Y )

with arbitrary αi ≥ 0 such that α0 + · · · + αp = 1. Optimizing over the coefficients αi, it is
equivalent to

1

I(p)(X + Y )
≥

p∑
k=0

1

I(k)(X)I(p−k)(Y )
. (1.9)
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Testing this inequality in the class of the Gamma distributions with p = 3, we had come to
the conclusion that it was not correct in general. Nevertheless, one can give simple sufficient
conditions for the validity of (1.9), including the case where one of the summands is normal.

Theorem 1.6. Let X and Y be independent random variables, and let X have a normal
distribution. Then (1.9) holds true.

A more general sufficient condition for (1.9) to hold is that I(k)(X) is finite for any k ≤ p,
and that the density f of X satisfies∫ ∞

−∞

f (k)(x)f (l)(x)

f(x)
dx = 0,

whenever k 6= l (1 ≤ k, l ≤ p − 1). In the standard Gaussian case, this property means the
orthogonality of the Chebyshev-Hermite polynomials in L2 over the Gaussian measure.

We start with several examples illustrating the Fisher-type information and then discuss
basic properties of densities assuming that I(p)(X) is finite (Sections 2-5). A more general form
of Theorem 1.2 is presented in Section 6. Sections 7-9 contain detailed arguments towards the
lower semi-continuity and convexity of this functional, with proof of Theorem 1.4. Sections
10-11 are aimed at proving Theorem 1.3, and the remaining Sections 12-14 deal with the
Stam-type inequalities. We use the following plan.

1. Introduction.
2. Examples.
3. First elementary properties.
4. Integrability of derivatives.
5. Polynomial decay of densities and their derivatives.
6. Relative Fisher information of order p.
7. Lower semi-continuity.
8. Convex mixtures of probability measures.
9. Convexity and continuity along convolutions.
10. Representations in terms of isoperimetric profile.
11. Lower bounds for I(2) in terms of I4 and I.
12. Stam-type inequality in the case p ≥ 2.
13. Stam-type inequality with Gaussian components.
14. The Gamma distributions.

2. Examples

It is useful to keep in mind that the functional I(p) is shift invariant and homogeneous of order
−2p with respect to X, that is,

I(p)(a+ bX) = b−2p I(p)(X), a ∈ R, b 6= 0.

Example 2.1. If Z ∼ N(0, 1), then I(Z) = 1. The standard normal density

f(x) = ϕ(x) =
1√
2π

e−x
2/2
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of Z has derivatives f (p)(x) = (−1)pHp(x)ϕ(x). Hence ρp(x) = (−1)pHp(x) and

I(p)(Z) = EHp(Z)2 = p!

More generally, if X ∼ N(a, σ2) with parameters a ∈ R and σ > 0, then I(p)(X) = p!σ−2p.

Example 2.2. Let X have a beta distribution with parameters α, β > 0, i.e. with density

f(x) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1.

Near zero f (p)(x)2

f(x) ∼ const · xα−2p−1 which is integrable in a neighborhood of zero, if and only

if α > 2p. In this case, the derivatives are continuous at zero for all k = 0, 1, . . . , p − 1. A
similar conclusion is true about the point x = 1, and we conclude that

I(p)(X) <∞ ⇐⇒ min(α, β) > 2p.

Example 2.3. Suppose that the random variable X has an even positive density f on the
real line, which is C∞-smooth and such that

f(x) = cx−q, x ≥ 1,

with parameter q > 1 for some constant c > 0. In this case f (p)(x) = c1 x
−q−p for x ≥ 1,

where c1 6= 0 does not depend on x. Hence I(p)(X) <∞ for all integers p ≥ 1.

Example 2.4. If X has density f(x) = xe−x
2/2 supported on the half-axis x > 0, then

f ′(x) = (1− x2) e−x
2/2 and f ′′(x) = (x3 − 3x) e−x

2/2. Hence I(X) =∞, while∫ ∞
0

f ′′(x)2

f(x)
dx <∞.

Nevertheless, I(2)(X) =∞, since f ′ is not continuous: f ′(0−) = 0, f ′(0+) = 1.

Example 2.5. Consider the C∞-smooth density

f(x) = x2ϕ(x) =
1√
2π

x2e−x
2/2, x ∈ R.

Put ϕp = Hpϕ and note that ϕ′p = −ϕp+1, so that f = ϕ+ ϕ2 and f (p) = (−1)p (ϕp + ϕp+2).
Since H2p(0) + H2p+2(0) = cp and H2p−1(x) + H2p+1(x) ∼ −cpx as x → 0 with constants

cp = (−1)p−1 (2p)!
(p−1)!2p−1 , we conclude that

I(2p−1)(X) <∞, I(2p)(X) =∞ (p ≥ 1).

Example 2.6. Let X have a Gamma distribution with n degrees of freedom, that is, with
density

f(x) =
xn−1

Γ(n)
e−x, x > 0
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(where n may be a real positive number). Similarly to the beta distributions, I(p)(X) is finite
if and only if n > 2p. For the first three values of p, direct computations show that

I(X) =
1

n− 2
, (2.1)

I(2)(X) =
2

(n− 3)(n− 4)
, (2.2)

I(3)(X) =
6 (n2 + 13n+ 6)

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
(2.3)

for the parameters n > 2, n > 4, and n > 6, respectively (the formula (2.1) was already
mentioned in [8]). We postpone the derivation of these formulas to Section 14.

3. First elementary properties

It is well-known that, if I(X) is finite, then the density f of X represents a function of bounded
variation on the real line with a total variation norm satisfying

‖f‖TV =

∫ ∞
−∞
|f ′(x)| dx = E |ρ(X)| ≤

√
I(X).

In particular, f(−∞) = f(∞) = 0, and f is bounded by
√
I(X). The latter implies∫ ∞

−∞
f ′(x)2 dx ≤ I(X)3/2.

We now extend these relations to the Fisher-type information functionals of orders p ≥ 1.
Here and in the sequel, the following elementary observation will be needed.

Proposition 3.1. Let I(p)(X) be finite. If f(x) = 0 at the point x ∈ R and f (p−1) has a

finite derivative f (p)(x), then necessarily f (p)(x) = 0. We also have f ′(x) = 0.

Proof. Since f is non-negative, necessarily f ′(x) = 0, and we are done in the case p = 1.
If p ≥ 2, then, by Taylor’s formula in the Peano form,

f(x+ h) =
a2

2!
h2 + · · ·+ ap

p!
hp + o(|h|p), ak = f (k)(x), 2 ≤ k ≤ p,

and f (p)(x) = ap + o(|h|) as h → 0. Assuming that f (p)(x) 6= 0, let k be the smallest integer

in the interval 2 ≤ k ≤ p such that f (k)(x) 6= 0. Then ak 6= 0, ap 6= 0, so that

f (p)(x+ h)2

f(x+ h)
=

a2
p + o(|h)

ak
k! h

k + o(|h|k)
.

But this function is not integrable over h ∈ (−ε, ε) with ε > 0 small enough. �

Proposition 3.2. If I(p)(X) is finite, the derivative f (p−1) represents a function of bounded
variation with a total variation norm

‖f (p−1)‖TV =

∫ ∞
−∞
|f (p)(x)| dx ≤

√
Ip(X).
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In particular, f (p−1)(−∞) = f (p−1)(∞) = 0, and

max
x
|f (p−1)(x)| ≤

√
I(p)(X).

Proof. By the assumption, the derivative f (p−1) is differentiable on a set E ⊂ R of full
Lebesgue measure. By Proposition 3.1, f (p)(x) 6= 0⇒ f(x) > 0 for all x ∈ E. Hence, applying
the Cauchy inequality, we have∫ ∞

−∞
|f (p)(x)| dx =

∫
f(x)>0

|f (p)(x)| dx

=

∫
f(x)>0

|f (p)(x)|√
f(x)

√
f(x) dx ≤

√
I(p)(X),

proving the first assertion. As a consequence, the limits

f (p−1)(−∞) = lim
x→−∞

f (p−1)(x), f (p−1)(∞) = lim
x→∞

f (p−1)(x)

exist and are finite. Necessarily, these limits must be zero, since otherwise f(x) would behave
polynomially at infinity contradicting to the integrability of f . Finally,

max
x
|f (p−1)(x)| ≤ ‖f (p−1)‖TV ≤

√
I(p)(X).

�

Proposition 3.3. If I(p)(X) is finite, then∫ ∞
−∞
|f (p)(x)|2 dx ≤ I(p)(X)3/2.

This follows from ∫ ∞
−∞
|f (p)(x)|2 dx ≤ max

x
f(x)

∫
f(x)>0

|f (p)(x)|2

f(x)
dx.

4. Integrability of derivatives

Applying Proposition 3.2, one may extend its bound on the total variation norm to all deriva-
tives smaller than p (in a certain form). As before, we assume that p ≥ 1 is an integer.

Proposition 4.1. If f is the density of a random variable X with finite I(p)(X), then all

derivatives f (k), 1 ≤ k ≤ p, are integrable functions. Moreover,

‖f (k−1)‖TV =

∫ ∞
−∞
|f (k)(x)| dx ≤ Cp I

(p)(X)
k
2p (4.1)

with some constants Cp depending on p only. In particular, if f is supported on the interval

(a, b), finite or not, then f (k−1)(a+) = f (k−1)(b−) = 0. In addition,

max
x
|f (k−1)(x)| ≤ Cp I(p)(X)

k
2p . (4.2)
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Before turning to the proof, let us mention two immediate consequences.

Corollary 4.2. I(p)(X) > 0.

Indeed, in the case I(p)(X) = 0, we would obtain from (4.1) with k = 1 that necessarily
‖f‖TV = 0. But this is only possible when f is a constant.

Another immediate consequence from Proposition 4.1 concerns the decay of the character-
istic function

f̂(t) = E eitX =

∫ ∞
−∞

eitxf(x) dx, t ∈ R.

Corollary 4.3. If I(p)(X) is finite, then f̂(t) = o(|t|−p) as |t| → ∞.

For the proof, one may integrate by parts with t 6= 0, which gives

f̂(t) =
1

it

∫ ∞
−∞

f(x) deitx = − 1

it

∫ ∞
−∞

eitxf ′(x) dx

= . . . =
1

(it)p

∫ ∞
−∞

eitxf (p)(x) dx.

Here we used the property that all derivatives f (k) up to order p are integrable and vanishing
at infinity for all k ≤ p− 1. Since f (p) is integrable, the last integral tends to zero as |t| → ∞,
by the Riemann-Lebesgue lemma.

Lemma 4.4. For any integrable function u having derivatives up to order p ≥ 2 (in the
Radon-Nikodym sense for the p-th derivative), for all integers 1 ≤ k ≤ p− 1,∫ ∞

−∞
|u(k)(x)| dx ≤ Ap

∫ ∞
−∞
|u(x)| dx+Bp

∫ ∞
−∞
|u(p)(x)| dx (4.3)

with coefficients Ap and Bp depending on p only.

The integrability of the derivatives u(k) is stated in [4]. The inequality (4.3) can be obtained
by the repeated application of its particular case p = 2, namely∫ ∞

−∞
|u′(x)| dx ≤

∫ ∞
−∞
|u(x)| dx+

2

3

∫ ∞
−∞
|u′′(x)| dx,

which is derived for the class C(2) in [4], Proposition 5.1.

Proof of Proposition 4.1. The case k = p is governed by Proposition 3.2, so, we may
assume that 1 ≤ k ≤ p− 1 with p ≥ 2. Let us apply (4.3) to the function u(x) = f(λx) with
parameter λ > 0. Then we get∫ ∞

−∞
|f (k)(x)| dx ≤ Ap λ

−k +Bp λ
p−k

∫ ∞
−∞
|f (p)(x)| dx.

Optimizing over all λ, this yields∫ ∞
−∞
|f (k)(x)| dx ≤ Cp

(∫ ∞
−∞
|f (p)(x)| dx

)k/p
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with p-dependent constants Cp. It remains to apply Proposition 3.2. �

5. Polynomial decay of densities and their derivatives

If the moment β2s = E |X|2s is finite for some real number s > 0, then (cf. [5])∫ ∞
−∞
|x|p |f ′(x)| dx ≤

√
β2s I(X).

Moreover,

lim
|x|→∞

(1 + |x|s) f(x) = 0.

These results may be generalized, which allows one to control a polynomial decay of densities
and their derivatives at infinity.

Proposition 5.1. If I(p)(X) and β2s are finite for an integer p ≥ 1 and s > 0, then∫ ∞
−∞
|x|s |f (p)(x)| dx ≤

√
β2s I(p)(X).

As a consequence, for all x ∈ R,

|f (p−1)(x)| ≤ c

1 + |x|s
, c =

(
1 +

√
β2s

)√
I(p)(X).

Moreover,

f (p−1)(x) = o
(
|x|−s

)
as |x| → ∞.

Proof. Put I = I(p)(X). Recall that, by Proposition 3.1, f (p)(x) 6= 0 ⇒ f(x) > 0 for all
points x from a set of full Lebesgue measure. Hence, applying the Cauchy inequality, we have∫ ∞

−∞
|x|s |f (p)(x)| dx =

∫
f(x)>0

|x|s |f (p)(x)| dx

=

∫
f(x)>0

|f (p)(x)|√
f(x)

|x|s
√
f(x) dx ≤

√
β2sI.

This proves the first assertion.
Let us combine the obtained inequality with the one of Proposition 3.2. Then we get∫ ∞

−∞
(1 + |y|s) |f (p)(y)| dy ≤

(
1 +

√
β2s

)√
I.

Restricting the integration on the left-hand side to the half-axis y ≥ x ≥ 0, the left integral
can be bounded from below by

(1 + |x|s) ε(x), where ε(x) =

∫ ∞
x
|f (p)(y)| dy.
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Hence, for any b > x,

|f (p−1)(x)− f (p−1)(b)| =
∣∣∣ ∫ b

x
f (p)(y) dy

∣∣∣
≤

∫ ∞
x
|f (p)(y)| dy ≤ 1

1 + |x|s
(
1 +

√
β2s

)√
I.

Letting b → ∞ and applying the property f (p−1)(b) → 0 (Proposition 3.2), we arrive at the
second required inequality. Since ε(x)→ 0 as x→∞, the last assertion follows as well. �

Proposition 5.2. If I(p)(X) and β2s are finite for an integer p ≥ 1 and s > 0, then

f (p−k)(x) = o
( 1

|x|s−k+1

)
, k = 1, . . . , p, s > k − 1,

as |x| → ∞. Moreover, in the case k = p,

f(x) = o
( 1

|x|s−p+1

)
, s ≥ p− 1.

Proof. The case k = 1 corresponds to Proposition 5.1:

|f (p−1)(y)| ≤ ε(y)

1 + |y|s
,

where ε(y)→ 0 as |y| → ∞. After the repeated integration of this inequality over y > x ≥ 0,

and using f (p−l)(∞) = 0, 1 ≤ l ≤ p (Proposition 4.1), we get, as x→∞,

f (p−2)(x) = o
(
x−(s−1)

)
, p ≥ 2, s > 1,

f (p−3)(x) = o
(
x−(s−2)

)
, p ≥ 3, s > 2, . . .

f (p−k)(x) = o
(
x−(s−(k−1))

)
, p ≥ k, s > k − 1,

which corresponds to the first claim. In the remaining case k = p and s = p − 1, the second
claim f(x) = o(1) holds true according to Proposition 4.1. �

6. Relative Fisher information of order p

Given two random variables X and Y with densities f and g from the class Cp, define the
relative Fisher information of an integer order p ≥ 1 by

I(p)(X|Y ) = I(p)(f |g) =

∫ ∞
−∞

∣∣∣f (p)(x)

f(x)
− g(p)(x)

g(x)

∣∣∣2 f(x) dx.

This is a natural extension of the classical order p = 1 (see also [12] for other extensions).
Of a special interest is the case Y = Z with the standard normal density g = ϕ. Then

I(p)(X|Z) = I(p)(f |ϕ) =

∫ ∞
−∞

∣∣∣f (p)(x)

f(x)
− (−1)pHp(x)

∣∣∣2 f(x) dx.
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Since the Chebyshev-Hermite polynomial Hp(x) has degree p, for the last integral to be finite
it is natural to require that X have a finite moment β2p(X) = EX2p. Then, opening the
brackets, we get another representation

I(p)(X|Z) = I(p)(X)− 2 (−1)p
∫ ∞
−∞

f (p)(x)Hp(x) dx+ EHp(X)2.

Assuming that I(p)(X) is finite, the above integral is finite according to Proposition 5.1 and
may be easily evaluated. Namely, by Proposition 5.2 with s = p,

f (p−k)(x) = o
( 1

|x|p−k+1

)
as |x| → ∞, k = 1, . . . , p− 1.

Hence, integrating by parts and using H ′n(x) = nHn−1(x), we have

(−1)p
∫ ∞
−∞

f (p)(x)Hp(x) dx = (−1)p
∫ ∞
−∞

Hp(x) df (p−1)(x)

= (−1)p−1

∫ ∞
−∞

f (p−1)(x) dHp(x)

= (−1)p−1 p

∫ ∞
−∞

f (p−1)(x)Hp−1(x) dx.

Repeating the integration by parts, we will arrive at

(−1)p
∫ ∞
−∞

f (p)(x)Hp(x) dx = p!

∫ ∞
−∞

f(x)H0(x) dx = p!

The latter factorial may also be written as I(p)(Z) = EHp(Z)2. Let us summarize in the next
assertion containing Theorem 1.2.

Proposition 6.1. If I(p)(X) and β2p(X) are finite for an integer p ≥ 1, then

I(p)(X|Z) = I(p)(X)− 2p! + EHp(X)2.

In particular,

I(p)(X) + EHp(X)2 ≥ 2p!

with equality if and only if X has a standard normal distribution. Therefore,

EHp(X)2 = EHp(Z)2 ⇒ I(p)(X) ≥ I(p)(Z).

One may generalize this statement by replacing Hp(x) with an arbitrary polynomial
H(x) = xp + ap−1x

p−1 + · · ·+ a0 with leading coefficient 1. In this case again∫ ∞
−∞

∣∣∣f (p)(x)

f(x)
− (−1)pH(x)

∣∣∣2 f(x) dx = I(p)(X)

−2 (−1)p
∫ ∞
−∞

f (p)(x)H(x) dx+ EH(X)2,
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while, integrating by parts, we have

(−1)p
∫ ∞
−∞

f (p)(x)H(x) dx = (−1)p
∫ ∞
−∞

H(x) df (p−1)(x)

= (−1)p−1

∫ ∞
−∞

f (p−1)(x) dH(x)

= (−1)p−1

∫ ∞
−∞

f (p−1)(x)H ′(x) dx.

Repeating the integration by parts, we will arrive at

(−1)p
∫ ∞
−∞

f (p)(x)H(x) dx =

∫ ∞
−∞

f(x)H(p)(x) dx = p!

Hence, we arrive at:

Proposition 6.2. If I(p)(X) and β2p(X) are finite for an integer p ≥ 1, then for any
polynomial H(x) = xp + ap−1x

p−1 + · · ·+ a0,

I(p)(X) + EH(X)2 ≥ 2p!

7. Lower semi-continuity

We now consider the lower semi-continuity of the Fisher information. In the case p = 1, the
next statement corresponds to Proposition 3.1 from [5].

Proposition 7.1. Let (Xn)n≥1 be a sequence of random variables, and let X be a random
variable such that Xn ⇒ X weakly in distribution as n→∞. For any integer p ≥ 1,

I(p)(X) ≤ lim inf
n→∞

I(p)(Xn). (7.1)

Since the general case requires some modifications in the argument used for p = 1 (espe-
cially in the last steps), we include the proof below.

Proof. Denote by Pp the collection of all probability densities f on the real line with
finite Fisher information of order p, and let Pp(I) denote the subset of all densities which
have Fisher information at most I. Since the case p = 1 in (7.1) is known, let p ≥ 2.

For the proof of (7.1), we may assume that I(Xn)→ I as n→∞ for some finite constant
I. Then, for sufficiently large n, and without loss of generality for all n ≥ 1, the random
variables Xn have densities fn belonging to Pp(I + 1). In particular, these densities have

derivatives f
(k)
n up to order p − 1, such that the functions f

(p−1)
n are absolutely continuous

and have Radon-Nikodym derivatives f
(p)
n .

According to Proposition 4.1, for every k = 0, 1, . . . , p− 1,

‖f (k)
n ‖TV + sup

x
|f (k)
n (x)| < Cp(I + 1) (7.2)
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with a constant Cp depending on p only. By the second Helly theorem (cf. e.g. [K-F]), f
(k)
n (x)

are convergent pointwise to some functions gk(x) of bounded total variation along a certain
subsequence. For simplicity of notations, let this subsequence be a whole sequence, that is,

lim
n→∞

f (k)
n (x) = gk(x) for all x ∈ R. (7.3)

Due to (7.2), this property can be complemented by the L1 convergence on bounded intervals
(for a proof, cf. [4], Proposition 11.4): For all a < b ,

lim
n→∞

∫ b

a
|f (k)
n (x)− gk(x)| dx = 0. (7.4)

Putting g0 = g, we have, in particular, limn→∞ fn(x) = g(x) and

lim
n→∞

∫ b

a
|fn(x)− g(x)| dx = 0, −∞ < a < b <∞. (7.5)

Necessarily, g(x) ≥ 0 and
∫∞
−∞ g(x) dx ≤ 1 (by Fatou’s lemma). In fact,

∫∞
−∞ g(x) dx = 1

which follows from the weak convergence of the distributions of Xn. Indeed, the latter implies
and is actually equivalent to the property that, for any open set G ⊂ R,

P(X ∈ G) ≤ lim inf
n→∞

P(Xn ∈ G)

(cf. e.g. [1]). Given ε > 0, choose an interval G = (a, b) such that P(X ∈ G) > 1− ε, so that

lim inf
n→∞

∫
G
fn(x) dx > 1− ε.

By (7.5), the last integrals are convergent to
∫
G g(x) dx. Therefore,

∫
G g(x) dx ≥ 1− ε for any

ε > 0, hence g is a probability density. Since, the property (7.5) is stronger than the weak
convergence, we also conclude that the distribution of X is absolutely continuous with respect
to the Lebesgue measure and has density g.

If 1 ≤ k ≤ p− 1, from (7.3)-(7.4) it follows that, for all a, b ∈ R,∫ b

a
gk(x) dx = gk−1(b)− gk−1(a). (7.6)

This means that gk represents a Radon-Nikodym derivative of gk−1. In particular, gk−1 is
continuous, and we conclude that the density g has p − 2 continuous derivatives g(k) = gk,
1 ≤ k ≤ p − 2. The case k = p − 1 in (7.6) similarly implies that gp−1 = g(p−1) represents a

Radon-Nikodym derivative of gp−2 = g(p−2).
Now, by Proposition 3.3, ∫ ∞

−∞
|f (p)
n (x)|2 dx ≤ Cp(I + 1)3/2. (7.7)

Since the unit ball of any separable L2-space is weakly compact, there is a subsequence of f
(p)
n

which is weakly convergent to some function gp ∈ L2(R). For simplicity of notations, again
let this subsequence be a whole sequence, so that∫ ∞

−∞
f (p)
n (x)u(x) dx→

∫ ∞
−∞

gp(x)u(x) dx (n→∞) (7.8)
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for any u ∈ L2(R). Choosing here the indicator function u = 1(a,b) of a finite interval and
applying (7.3) with k = p− 1, we obtain that

g(p−1)(b)− g(p−1)(a) =

∫ b

a
gp(x) dx.

This means that gp appears as a Radon-Nikodym derivative of gp−1. In particular, gp−1 is

continuous, and therefore g has p− 1 continuous derivatives g(k) = gk, 1 ≤ k ≤ p− 1. Thus,
the function g belongs to the class Cp with g(p) = gp and I(p)(X) = I(p)(g).

Finally, consider the sequence of functions

hn(x, λ) = f (p)
n (x) e−λfn(x)/2, x ∈ R, λ > 0.

They have bounded L2-norms on the half-plane R× R+, namely

‖hn‖2L2(R×R+) =

∫ ∞
−∞

∫ ∞
0

hn(x, λ)2 dx dλ

=

∫
fn(x)>0

f
(p)
n (x)2

fn(x)
dx = I(p)(Xn) ≤ I + 1.

Here we applied Proposition 3.1, according to which f
(p)
n (x) = 0 for almost all x on the set

where fn(x) = 0.
Let us verify that hn are weakly convergent in L2 to the function

h(x, λ) = g(p)(x) e−λg(x)/2

on every rectangle R = [−T, T ]× [λ0, λ1] with fixed T > 0 and λ1 > λ0 > 0. Write

hn(x, λ)− h(x, λ) = f (p)
n (x)

(
e−λfn(x)/2 − e−λg(x)/2

)
+
(
f (p)
n (x)− g(p)(x)

)
e−λg(x)/2. (7.9)

Given a Borel measurable function u ∈ L2(R× R+) supported on R, define

u1(x) =

∫ λ1

λ0

e−λg(x)/2 u(x, λ) dλ, x ∈ R.

It is Borel measurable, supported on [−T, T ], and is bounded, since g is continuous (hence
bounded on [−T, T ]). Therefore, by the Fubini theorem and the weak convergence (7.8),∫∫

R

(
f (p)
n (x)− g(p)(x)

)
e−λg(x)/2 u(x, λ) dx dλ

=

∫ ∞
−∞

(
f (p)
n (x)− gp(x)

)
u1(x) dx → 0 (n→∞). (7.10)

Next, by (7.3) with k = 0, we have fn(0)→ g(0) as n→∞. Using the representation

(fn(x)− g(x))− (fn(0)− g(0)) =

∫ x

0
(f ′n(y)− g′(y)) dy,

from (7.4) with k = 1 it also follows that

εn = sup
|x|≤T

|fn(x)− g(x)| → 0.

Hence
|e−λfn(x)/2 − e−λg(x)/2| ≤ Cεn
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with some constant C (which may depend on T and λj). Using Cauchy’s inequality, this gives∣∣∣ ∫∫
R
f (p)
n (x)

(
e−λfn(x)/2 − e−λg(x)/2

)
u(x, λ) dx dλ

∣∣∣2
≤ (Cεn)2 (λ1 − λ0)

∫ ∞
−∞

f (p)
n (x)2 dx

∫∫
R
u(x, λ)2 dx dλ → 0

as n→∞, where we applied (7.7) in the last step. Combining this with (7.10) and returning
to (7.9), we conclude that∫∫

R
(hn(x, λ)− h(x, λ))u(x, λ) dx dλ → 0 (n→∞),

which means that hn is weakly convergent to h in the space L2(R). Therefore

‖h‖2L2(R) ≤ lim inf
n→∞

‖hn‖2L2(R) ≤ lim inf
n→∞

I(p)(Xn) = I.

Thus, ∫ T

−T

∫ λ1

λ0

g(p)(x)2 e−λg(x) dx dλ ≤ I.

Letting here T →∞, λ1 →∞ and λ0 → 0, we arrive at (7.1). �

Remark 7.2. On the set Pp(I) the weak convergence of the associated probability distri-
butions coincides with the convergence in total variation distance (which corresponds to the
convergence of probability densities in the L1-norm). For the proof, suppose that Xn ⇒ X

weakly in distribution as n → ∞ with I(p)(Xn) ≤ I. Then Xn have densities fn of class Cp

with I(p)(fn) ≤ I. We need to show that X has a density f in the same class such that∫ ∞
−∞
|fn(x)− f(x)| dx→ 0 (n→∞). (7.11)

Equivalently, it is sufficient to show that from any prescribed subsequence fnk
one may extract

a further subsequence fnkl
which is convergent in L1 to some density f . Arguing as in the

beginning of the proof of Proposition 7.1, we obtain such a subsequence with the property
that fnkl

(x) → f(x) for all x ∈ R as l → ∞ for some density f . Applying Scheffe’s lemma,

this leads to (7.11) for fnkl
and f .

8. Convex mixtures of probability measures

We will consider some properties of the Fisher-type information for random variables whose
distributions are representable in a natural way as mixture of probability measures (including
convolutions). In order to make all statements rigorous and as general as possible, first let us
give a few remarks about the notion of mixture.

Denote by M the collection of all probability measures on the real line. We treat it as a
separable metric space with the topology of weak convergence which may be metrized using
the Lévy distance, for example. As such, this space has a canonical Borel σ-algebra generated
by the collection of all open subsets of M.
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Lemma 8.1. For any Borel set A ⊂ R, the functional TA(ν) = ν(A) is Borel measurable
on M. Moreover, the functional

Tu(ν) =

∫ ∞
−∞

u dν

is Borel measurble on M, whenever the function u : R→ R is bounded and Borel measurable.

Proof. Consider the collection A of all Borel sets A ⊂ R such that TA is Borel measurable
on M. Let us list several basic properties of this functional.

1) For the union A of disjoint Borel sets An, we have TA =
∑∞

n=1 TAn .
2) For the monotone limit A of increasing or decreasing Borel sets An, TA = limn→∞ TAn .
3) For the complement Ā = R \A, we have TĀ = 1− TA.
4) More generally, TA\B = TA − TB as long as B ⊂ A.
5) If A is closed, and νn → ν weakly in M, then

lim sup
n→∞

νn(A) ≤ ν(A).

The last property is equivalent to saying that the functional TA is upper semi-continuous
on M. Hence, it is Borel measurable on M, that is, A ∈ A. Thus, A is a monotone class
containing all semi-open intervals (a, b] = (−∞, b] \ (−∞, a], and therefore, this class contains
all Borel subsets of the real line.

For the second assertion, first note that if u is simple in the sense that it is a finite linear
combination of indicator functions 1A of Borel sets A ⊂ R, we are reduced to the previous
step. In the general case, if |u| ≤ M , there is a sequence of simple functions un with values
in [−M,M ] such that un(x) → u(x) for all x ∈ R as n → ∞. By the Lebesgue dominated
convergence theorem, Tun(ν) → Tu(ν) for any ν ∈ M, implying that Tu is Borel measurable
on M. �

Lemma 8.1 justifies the following:

Definition 8.2. Let π be a Borel probability measure on the space M. A convex mixture
of probability measures on the real line with a mixing measure π is given by

µ(A) =

∫
M
ν(A) dπ(ν), A ⊂ R (Borel). (8.1)

Recall that in the space M there is a canonical metric defined by the total variation
distance ‖ν − λ‖TV between probability measures. It generates a stronger topology, and M
is not separable with respect to this metric (because, for example, ‖δx − δy‖TV = 2 for all
x, y ∈ R, x 6= y). Nevertheless, the balls for this metric are Borel measurable for the weak
topology. Indeed, for any signed Borel measure ν0 on R,

‖ν − ν0‖TV = sup
u
|Tu(ν)− Tu(ν0)|,

where the supremum may be taken over the set C0 of all continuous, compactly supported
functions u on R such that |u| ≤ 1. Moreover, this supremum can be restricted to a countable
set, since the space C0 is separable for the supremum-norm. Since for each u in C0, the
functional ν → Tu(ν) is continuous on M, the functional ν → ‖ν−ν0‖TV is Borel measurable.
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Lemma 8.3. The collection M0 of all absolutely continuous probability measures on the
real line (with respect to the Lebesgue measure) represents a Borel set in M.

Proof. Recall that a probability measure ν on the real line with distributions function
F (x) = ν((−∞, x]), x ∈ R, is absolutely continuous, if and only if F is absolutely continuous
in the sense of Function Theory: For any ε > 0, there is δ > 0, such that for any finite
collection of non-overlapping intervals (ai, bi) ⊂ R, 1 ≤ i ≤ n,

n∑
i=1

(bi − ai) < δ =⇒
n∑
i=1

(F (bi)− F (ai)) < ε.

Since F is non-decreasing and right-continuous, here one may additionally require that the
endpoints ai and bi represent rational numbers. Also, one may replace open intervals in this
definition with semi-open intervals (ai, bi], leading to the increments F (bi)− F (ai−). Define

A =
{
A =

n⋃
i=1

(ai, bi] : a1 < b1 ≤ · · · ≤ an < bn, ai, bi ∈ Q, n ≥ 1
}

and rewrite the definition of the absolute continuity of ν as the property that, for any ε > 0,
there is δ > 0 such that, for any A ∈ A, λ(A) ≤ δ ⇒ ν(A) ≤ ε, where λ denotes the Lebesgue
measure. In terms of the functional

Mδ(ν) = sup
{
ν(A) : A ∈ A, λ(A) ≤ δ

}
,

this is equivalent to saying that

M(ν) ≡ inf
δ>0

Mδ(ν) = inf
k
M1/k(ν) = 0.

Now, the crucial point is that the collection A is countable. Applying Lemma 8.1, we
conclude that every functional Mδ is Borel measurable on M as the supremum of countably
many Borel measurable functionals. Therefore, M is Borel measurable as well, and the set
M0 is described as the pre-image M−1({0}). �

Denote by P the collection of all (probability) densities f on the real line. It is a closed
convex subset of L1(R) with respect to the usual L1-metric. With every f in P we associate the
probability measure µf with this density. By Lemma 8.3, the collection M0 = {µf : f ∈ P}
represents a Borel set in M. One can thus identify P and M0 by means of the bijective map
f → µf .

Lemma 8.4. The Borel σ-algebra in P induced from L1(R) coincides with the Borel
σ-algebra in M0 induced from M.

Proof. Given a sequence fn and f in P, the weak convergence µfn → µf in M is equivalent
to ∫ x

−∞
fn(y) dy →

∫ x

−∞
f(y) dy for any x ∈ R

(and actually uniformly over all x). It is weaker than the convergence in L1

‖µfn − µf‖TV = ‖fn − f‖1 =

∫ ∞
−∞
|fn(y)− f(y)| dy → 0,
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which is equivalent to the convergence of the measures in total variation distance. Hence, the
Borel σ-algebra in M0 induced from M is (formally) smaller than the Borel σ-algebra in P
induced from L1(R), using the identification of P and M0.

For the opposite inclusion, first recall that the Borel σ-algebra in L1(R) is generated by
the L1-balls

B = {f ∈ L1(R) : ‖f − f0‖1 < r}, f0 ∈ L1, r > 0

(since the space L1 is separable). Hence, it is sufficient to see that any set of the form
D = B ∩P is Borel measurable in M (where we use Lemma 8.3). This is the same as saying
that the balls in M for the total variation distance are Borel measurable, which has been
already explained. �

As a consequence from Lemma 8.4, one may use Definition 8.2 starting from a Borel
probability measure π on P. Following this definition, one can define the convex mixture
according to (8.1):

µ(A) =

∫
P

[ ∫
A
g(x) dx

]
dπ(g), A ⊂ R (Borel).

This measure belongs to M0 and has some density f(x) = dµ(x)
dx called the (convex) mixture

of densities with mixing measure π. For short,

f(x) =

∫
P
g(x) dπ(g), x ∈ R. (8.2)

9. Convexity and continuity along convolutions

Another general property of the Fisher-type information is its convexity, that is, we have:

Proposition 9.1. Given probability densities fi on the real line and weights αi > 0 such
that

∑n
i=1 αi = 1, we have

I(p)(f) ≤
n∑
i=1

αiI
(p)(fi), where f =

n∑
i=1

αifi. (9.1)

Proof. This follows from the fact that the function R(u, v) = u2/v is 1-homogeneous and
convex on the upper half-plane u ∈ R, v > 0.

For more details, one may assume that n = 2 and I(p)(fi) <∞, i = 1, 2. Thus, f1, f2 and

f belong to the class Cp with f (p) = α1f
(p)
1 +α2f

(p)
2 . Let G denote the set of all points x ∈ R

where f(x) > 0 and such that the derivatives f
(p−1)
i (x) are differentiable at x, so that

I(p)(f) =

∫
G
R
(
f (p)(x), f(x)

)
dx.

The set G can be decomposed into the three measurable parts

G0 = {x ∈ G : f1(x) > 0, f2(x) > 0},
G1 = {x ∈ G : f1(x) > 0, f2(x) = 0},
G2 = {x ∈ G : f1(x) = 0, f2(x) > 0}.
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On the first part, due to the convexity of R,∫
G0

R
(
f (p)(x), f(x)

)
dx ≤ α1

∫
G0

R
(
f

(p)
1 (x), f1(x)

)
dx+ α2

∫
G0

R
(
f

(p)
2 (x), f2(x)

)
dx.

If x ∈ G1, then f(x) = α1f1(x) and∫
G1

R
(
f (p)(x), f(x)

)
dx = α1

∫
G1

R
(
f

(p)
1 (x), f1(x)

)
dx.

Similarly, ∫
G2

R
(
f (p)(x), f(x)

)
dx = α2

∫
G2

R
(
f

(p)
2 (x), f2(x)

)
dx.

Summing the last inequality with the last two equalities, we obtain (9.1). �

As a consequence, the collection of all probability densities f on the real line such that
I(p)(f) ≤ I is convex for any value of I.

We need to extend Jensen’s inequality (9.1) to arbitrary “continuous” convex mixtures
of densities and probability distributions. For this aim, we temporarily employ the notation
I(p)(µ) for I(p)(X), when a random variable X is distributed according to µ.

Proposition 9.1. If a probability density f is a convex mixture of densities with mixing
measure π on P, then

I(p)(f) ≤
∫
P
I(p)(g) dπ(g). (9.2)

More generally, if a probability measure µ is a convex mixture of probability measures with
mixing measure π on M, then

I(p)(µ) ≤
∫
M
I(p)(ν) dπ(ν). (9.3)

The integrals in (9.2)-(9.3) make sense, since the functionals g → I(p)(g) and ν → I(p)(ν)
are lower semi-continuous and hence Borel measurable on P and M, respectively (Proposition
7.1 and Lemma 8.3).

The proof of Proposition 9.1 is similar to the one of Proposition 3.3 in [5] for the case
p = 1, so we omit it. Note, however, that the argument uses the lower-semi-continuity of the
functional I(p).

For the proof of (9.3), one may assume that the integral on the right-hand side is finite.

But then I(p)(ν) <∞ for π-almost all ν, which implies that the mixing measure π is supported
on M0. In this case, µ belongs to M0, and (9.3) is thus reduced to (9.2).

As a consequence of Proposition 9.1, the functional I(p) is monotone under convolutions.

Corollary 9.2. For all independent random variables X and Z,

I(p)(X + Z) ≤ I(p)(X). (9.4)
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Proof. Let ν denote the distribution of X, and let νz(A) = ν(A − z) be the shift of ν
(z ∈ R). The distribution of X + Z represents the mixture

µ =

∫ ∞
−∞

νz dP (z),

where P is the distribution of Z. The map T : R → M defined by T (z) = νz is continuous,
so, the image B = T (R) is a σ-compact, hence a Borel set in M. This map pushes forward
P to a Borel probability measure π supported on B. It remains to apply (9.4) and note that

I(p)(νz) = I(p)(ν) for all z. �

Combining Propositions 7.1 and Corollary 9.2, we obtain the continuity property of the
functional I(p) for convolved densities as stated in Theorem 1.4: For all independent random
variables X and Z,

lim
ε→0

I(p)(X + εZ) = I(p)(X). (9.5)

Proof of Theorem 1.4. The distributions of X + εZ are weakly convergent to the
distribution of X as ε→ 0, so that, by (7.1),

I(p)(X) ≤ lim inf
ε→0

I(p)(X + εZ).

On the other hand, I(p)(X + εZ) ≤ I(p)(X), by (9.4). Both inequalities lead to (9.5). �

Corollary 9.3. Suppose that a normal random variable Z is independent of the random
variable X. Then the function ε→ I(p)(X + εZ) is finite and non-decreasing in ε > 0.

Indeed, let Z ∼ N(0, 1). By Corollary 9.2 and according to Example 2.1,

I(p)(X + εZ) ≤ I(p)(εZ) = p! ε−2p.

The monotonicity follows from the fact that the convolution of Gaussian measures is Gaussian.

Remark 9.4. The functional

Ip(X) = Ip(f) = E |ρ(X)|p =

∫ ∞
−∞

∣∣∣f ′(x)

f(x)

∣∣∣p f(x) dx

satisfies similar properties as the Fisher information (in the case p = 1), such as the lower
semi-continuity and the monotonicity

Ip(X + Y ) ≤ min{Ip(X), Ip(Y )}
for all for independent summands X and Y . As a consequence, we have the analog of (9.5)

lim
ε→0

Ip(X + εZ) = Ip(X). (9.6)

It is shown in [3] that, if p ≥ 1 is an integer and the random variables (Xi)1≤i≤p+1 are
independent and have densities of bounded total variation bi = I1(Xi), then

Ip(X1 + · · ·+Xp+1) ≤ cp b1 . . . bp+1

( 1

b1
+ · · ·+ 1

bp+1

)
with constant cp = pp/(2pp!). Hence, similarly to Corollary 9.3, we have Ip(X + εZ) <∞ for
all p, assuming that the random variables X and Z are independent, and Z ∼ N(0, 1).
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10. Representations in terms of isoperimetric profile

If a continuous probability density f is supported and positive on the interval (a, b) ⊂ R,
finite or not, the associated distribution may be characterized, up to a shift parameter, by
the function (called sometimes the isoperimetric profile)

L(t) = f(F−1(t)), 0 < t < 1, (10.1)

or equivalently

f(x) = L(F (x)), a < x < b. (10.2)

This follows from the equality

F−1(t2)− F−1(t1) =

∫ t2

t1

dt

L(t)
, 0 < t1, t2 < 1,

where F−1 : (0, 1)→ (a, b) denotes the inverse of the distribution function F (x) =
∫ x
a f(y) dy,

a < x < b.
If f is locally absolutely continuous on (a, b) and has a Radon-Nikodym derivative f ′, both

F and F−1 will be C1-smooth functions with absolutely continuous derivatives. Hence, L is
also locally absolutely continuous on (0, 1). Differentiating (10.2), we obtain f ′ = L′(F )f a.e.
in (a, b), implying that the random variable X with density f has the Fisher information

I(X) =

∫ b

a
L′(F (x))2f(x) dx =

∫ 1

0
L′(t)2 dt.

More generally, the moments of the scores of X are given by

Ip(X) =

∫ 1

0
|L′(t)|p dt. (10.3)

Moreover, if f ′ is locally absolutely continuous on (a, b) and has a Radon-Nikodym de-
rivative f ′′, then both F and F−1 are C2-smooth with absolutely continuous second order
derivatives. Hence, L also has a locally absolutely continuous derivative L′′ on (0, 1). Starting
from (10.1), we get (L2)′ = 2f ′(F−1) and (L2)′′ = 2f ′′(F−1)/f(F−1). This gives:

Proposition 10.1. Suppose that the density f of the random variable X is supported
and positive on an interval, finite or not. If it is of the class C1 or C2, then respectively

I(X) =

∫ 1

0
L′(t)2 dt,

I(2)(X) =
1

4

∫ 1

0

(
L2(t)′′

)2
dt =

∫ 1

0

(
L′(t)2 + L(t)L′′(t)

)2
dt. (10.4)

Note that, if I(2)(X) is finite, then necessarily∫ 1

0

(
L′(t)2 + L(t)L′′(t)

)
dt =

∫ 1

0

(
L(t)L′(t)

)′
dt = 0.
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This follows from the property that f ′(a+) = f ′(b−) = 0 according to Proposition 3.2. Indeed,
using LL′ = f ′(F−1), we get∫ t1

t0

(
L(t)L′(t)

)′
dt = L(t1)L′(t1)− L(t0)L′(t0)→ 0 as t0 ↓ 0, t1 ↑ 1.

There is another representation for the integral in (10.4).

Proposition 10.2. Suppose that the density f ∈ C2 of the random variable X is supported
and positive on an interval, finite or not. Then

I(2)(X) =

∫ 1

0

(
L′′(t)2L(t)2 +

1

3
L′(t)4

)
dt, (10.5)

as long as the latter integral is finite, which is equivalent to the finiteness of I(2)(X).

Proof. By (10.4),

I(2)(X) =

∫ 1

0

(
L′′(t)2L(t)2 + L′(t)4 + 2L′′(t)L′(t)2L(t)

)
dt. (10.6)

Integrating by parts, we have, for all 0 < t0 < t1 < 1,∫ t1

t0

L′′(t)L′(t)2L(t) dt =

∫ t1

t0

L′(t)2L(t) dL′(t)

= L(t1)L′(t1)3 − L(t0)L′(t0)3 −
∫ t1

t0

L′(t) d (L′(t)2L(t))

= L(t1)L′(t1)3 − L(t0)L′(t0)3 −
∫ t1

t0

L′(t)4 dt− 2

∫ t1

t0

L′′(t)L′(t)2L(t) dt.

Equivalently,

3

∫ t1

t0

L′′(t)L′(t)2L(t) dt = L(t1)L′(t1)3 − L(t0)L′(t0)3 −
∫ t1

t0

L′(t)4 dt.

If

L(t)L′(t)3 → 0 as t→ 0 and t→ 1, (10.7)

in the limit as t0 → 0 and t1 → 1 we obtain that∫ 1

0
L′′(t)L′(t)2L(t) dt = −1

3

∫ 1

0
L′(t)4 dt.

As a result, (10.6) is simplified to (10.5). Note that the requirement (10.7) is equivalent to

the property that f ′(x)3

f(x)2
→ 0 as x→ a and x→ b.

In order to verify (10.7), we apply the Cauchy inequality and use the assumption to get(∫ 1

0
L′(t)2 L(t) |L′′(t)| dt

)2

≤
∫ 1

0
L′(t)4 dt

∫ 1

0
L(t)2L′′(t)2 dt <∞.

This implies that the function u = LL′3 has a bounded total variation on (0, 1). Indeed, its
derivative

u′ = L′4 + 3LL′2L′′
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is integrable. Therefore, the limits c0 = u(0+) and c1 = u(1−) exist and are finite. Let us
show that necessarily c0 = c1 = 0. Suppose that c0 6= 0. We have

(L(t)4/3)′ =
4

3
L(t)1/3L′(t) =

4

3
u(t)1/3 → 4

3
c

1/3
0

as t→ 0. Since L(0+) = 0 and L(t) > 0 for t ∈ (0, 1), this implies that c0 > 0 and moreover

L4/3(t) ≤ 2c
1/3
0 t for all t small enough, 0 < t ≤ t0, that is, L(t) ≤ (8c0)1/4 t3/4. This gives

L′(t) ∼ c
1/3
0

L(t)1/3
≥ c′

t1/4
, 0 < t ≤ t0,

with some constant c′ > 0. As a consequence, the function L′4 is not integrable on this
interval, which contradicts to the assumption. Hence, necessarily c0 = 0, and by a similar
argument, c1 = 0 as well. Thus, (10.7) is fulfilled. �

11. Lower bounds for I(2) in terms of I4 and I

The representation (10.5) may be used for the lower bound on I(2) in terms of I4 and I, in
order to derive the relation (1.5) of Theorem 1.3:

I(2)(X) ≥ 1

3
I4(X) ≥ 1

3
I(X)2. (11.1)

Proof of Theorem 1.3. First suppose that the conditions of Proposition 10.2 are fulfilled.
Then, by (10.5),

I(2)(X) ≥ 1

3

∫ 1

0
L′(t)4 dt ≥ 1

3

(∫ 1

0
L′(t)2 dt

)2
=

1

3
I(X)2.

Recalling the representation (10.3) for the functionals Ip, (11.1) follows.
For the finiteness of the integral (10.5), we need to assume that I4(X) is finite together with

integrability of the function (LL′′)2. In order to give a sufficient condition for this property
to hold, write

L′′(t) =
d

dt

f ′(F−1(t))

f(F−1(t))
=

f ′′(F−1(t))

f(F−1(t))2
− f ′(F−1(t))2

f(F−1(t))3

and

L(t)L′′(t) =
f ′′(F−1(t))

f(F−1(t))
−
(f ′(F−1(t))

f(F−1(t))

)2
. (11.2)

Using (x+ y)2 ≤ 2x2 + 2y2 (x, y ∈ R), this implies

L(t)2L′′(t)2 ≤ 2
(f ′′(F−1(t))

f(F−1(t))

)2
+ 2

(f ′(F−1(t))

f(F−1(t))

)4

and ∫ 1

0
L(t)2L′′(t)2 dt ≤ 2 I(2)(X) + 2 I4(X). (11.3)

Thus, (11.1) is proved provided that the random variable X has a density f of class C2 which

is positive and is supported on some interval (a, b) and such that I(2)(X) and I4(X) are finite.



24 Sergey G. Bobkov

In the general case, the previous step can be applied to the random variables Xε = X+εZ,
ε > 0, assuming that Z ∼ N(0, 1) is independent of X. In this case, all Xε have positive

C∞-smooth densities with finite I(2)(Xε) and I4(Xε), according to Corollary 9.3 and Remark
9.4. Hence we get

I(2)(Xε) ≥
1

3
I4(Xε) ≥

1

3
I(Xε)

2.

Letting here ε→ 0 and applying (9.5)-(9.6), we arrive at (11.1). �

Remark 11.1. We can now explain the last assertion in Proposition 10.2 about the
convergence of the integral in (10.5). Assuming that the Fisher-type information I(2)(X) is
finite and applying (11.1), we conclude that the moment I4(X) is finite and hence the integral
in (11.3) is finite as well. Thus, the integral in (10.5) is finite. Conversely, assuming that this
integral is finite, from (11.2) we obtain that(f ′′(F−1(t))

f(F−1(t))

)2
≤ 2L(t)2L′′(t)2 + 2

(f ′(F−1(t))

f(F−1(t))

)4
.

After the integration of this inequality over 0 < t < 1, we are led to the desired conclusion

I(2)(X) ≤ 2

∫ 1

0
L(t)2L′′(t)2 dt+ 2 I4(X) < ∞.

12. Stam-type inequality in the case p ≥ 2

Recall that the inequality (1.8) of Theorem 1.5 states that, for all k = 1, . . . , p− 1, p ≥ 2,

1

I(p)(X + Y )
≥ 1

I(p)(X)
+

1

I(p)(Y )
+

1

I(k)(X)I(p−k)(Y )
(12.1)

whenever the random variables X and Y are independent. In the case p = 2, this relation is
reduced to

1

I(2)(X + Y )
≥ 1

I(2)(X)
+

1

I(2)(Y )
+

1

I(X)I(Y )
. (12.2)

Let us test it on the normal distributions, that is, for X ∼ N(a1, σ
2
1) and Y ∼ N(a2, σ

2
2) with

a1, a2 ∈ R, σ1, σ2 > 0. Then X + Y ∼ N(a1 + a2, σ
2
1 + σ2

2), so that according to Example 2.1,

I(X) =
1

σ2
1

, I(Y ) =
1

σ2
2

,

I(2)(X) =
2

σ4
1

, I(2)(Y ) =
2

σ4
2

, I(2)(X + Y ) =
2

(σ2
1 + σ2

2)2
.

In this case, (12.2) becomes the equality

(σ2
1 + σ2

2)2

2
=
σ4

1

2
+
σ4

2

2
+ σ2

1σ
2
2.

Proof of Theorem 1.5. One may assume that the random variables X and Y have
C∞-smooth positive densities f and g with finite Fisher information of all orders up to p.
Indeed, if (12.1) is established under these conditions, in the general case one may apply this
relation to the random variables

Xε = X + εZ1, Yε = X + εZ2 (ε > 0),
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assuming that Z1 and Z2 are independent and have a standard normal distribution. Then
Xε + Yε = (X + Y ) + ε

√
2Z with Z ∼ N(0, 1), and (12.1) yields

1

I(p)(X + Y + ε
√

2Z)
≥ 1

I(p)(Xε)
+

1

I(p)(Yε)
+

1

I(k)(Xε)I(p−k)(Yε)
.

Letting ε→∞ and applying the continuity property, we arrive at the desired relation (12.1)
in full generality.

Under the above assumptions, the density of the sum X + Y represents the convolution

h(x) =

∫ ∞
−∞

f(x− y)g(y) dy =

∫ ∞
−∞

f(y)g(x− y) dy.

By Proposition 4.1, all derivatives of f and g are integrable up to order p and are vanishing
at infinity up to order p − 1. Hence the function h is smooth, everywhere positive, and we
have similar representations for its derivatives of any order k ≤ p

h(k)(x) =

∫ ∞
−∞

f (k)(x− y)g(y) dy =

∫ ∞
−∞

f (k)(y)g(x− y) dy.

Differentiating this equality p− k times, we obtain a Radon-Nikodym derivative

h(p)(x) =

∫ ∞
−∞

f (k)(x− y)g(p−k)(y) dy.

Hence, given real numbers αi ≥ 0 such that α0 + α1 + · · ·+ αp = 1, we have

h(p)(x) =

∫ ∞
−∞

p∑
k=0

αkf
(k)(x− y)g(p−k)(y) dy.

Let us introduce the probability measures

dµx(y)

dy
=
f(x− y)g(y)

h(x)
, x ∈ R,

and rewrite the above as

h(p)(x)

h(x)
=

∫ ∞
−∞

p∑
k=0

αk
f (k)(x− y) g(p−k)(y)

f(x− y) g(y)
dµx(y).

One may now apply Jensen’s inequality, which gives(h(p)(x)

h(x)

)2
≤
∫ ∞
−∞

( p∑
k=0

αk
f (k)(x− y) g(p−k)(y)

f(x− y) g(y)

)2

dµx(y),

or equivalently

h(p)(x)2

h(x)
≤

∫ ∞
−∞

( p∑
k=0

αk
f (k)(x− y) g(p−k)(y)

f(x− y) g(y)

)2

f(x− y)g(y) dy

=

p∑
k=0

α2
k

∫ ∞
−∞

f (k)(x− y)2 g(p−k)(y)2

f(x− y) g(y)
dy

+
∑
k 6=l

αkαl

∫ ∞
−∞

f (k)(x− y)f (l)(x− y)

f(x− y)

g(p−k)(y)g(p−l)(y)

g(y)
dy. (12.3)
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Integrating over x, we arrive at

I(p)(h) ≤
p∑

k=0

α2
k I

(k)(f)I(p−k)(g) +
∑
k 6=l

αkαl Vk,l(f)Vp−k,p−l(g), (12.4)

where we use the notation

Vk,l(f) =

∫ ∞
−∞

f (k)(x)f (l)(x)

f(x)
dx. (12.5)

Note that these integrals exist and are finite, since, by Cauchy’s inequality,∫ ∞
−∞

|f (k)(x)f (l)(x)|
f(x)

dx ≤
√
I(k)(X)I(l)(X) <∞,

and similarly for g. This also justifies the integration with respect to x in (12.3).
If k = 0 or l = 0, then the integral in (12.5) is vanishing. Indeed, in the case l = 0 and

1 ≤ k ≤ p,

Vk,0(f) =

∫ ∞
−∞

f (k)(x) dx = lim
T→∞

∫ T

−T
f (k)(x) dx

= lim
T→∞

(
f (k−1)(T )− f (k−1)(−T )

)
= 0,

where we applied Proposition 4.1. A similar conclusion applies to g, and as a consequence,

Vk,l(f)Vp−k,p−l(g) = 0, if k = 0, k = p, l = 0, l = p (k 6= l). (12.6)

For the setting of Theorem 1.5, we need to restrict ourselves to the case where αj = 0
whenever j 6= 0, k, p for a fixed k = 1, . . . , p− 1. Then the second sum in (12.4) contains only
3 terms, which are actually zero, by (12.6). Hence (12.4) is simplified to

I(p)(h) ≤ α2
0 I

(p)(f) + α2
p I

(p)(g) + α2
k I

(p)(f)I(p−k)(g).

Minimizing the right-hand side over all admissible αi yields (12.1). �

13. Stam-type inequality with Gaussian components

As we have already mentioned, Theorem 1.5 can be refined in the form of the relation

1

I(p)(X + Y )
≥

p∑
k=0

1

I(k)(X)I(p−k)(Y )
, (13.1)

where one of the independent summands has a normal distribution. This is a consequence of
a more general assertion which we state as a lemma.

Lemma 13.1. Let X and Y be independent random variables. Suppose that X has a
finite Fisher information I(p)(X) with a density f ∈ Cp such that

Vk,l(f) =

∫ ∞
−∞

f (k)(x)f (l)(x)

f(x)
dx = 0 for all k 6= l (1 ≤ k, l ≤ p− 1). (13.2)

Then the relation (13.1) holds true.
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Proof. As in the proof of Theorem 1.5, we may assume that Y has a C∞-smooth positive
density g with finite Fisher information of all orders up to p, and that the same is true for X.
The density h of the sum X + Y has been already shown to satisfy the relation (12.4), which
is simplified under the condition (13.2) to

I(p)(h) ≤
p∑

k=0

α2
k I

(k)(f)I(p−k)(g), αk > 0, α0 + · · ·+ αp = 1. (13.3)

It remains to minimize the right-hand side over all admissible coefficients αk. So, consider
the quadratic function of the form

Q(α1, . . . , αp) = A0α
2
0 +A1α

2
1 + · · ·+Apα

2
p, α0 = 1− α1 − · · · − αp,

with parameters Ak > 0. Its partial derivatives ∂αk
Q = −2A0α0 + 2Akαk are vanishing if and

only if αk = A0
Ak
α0, k = 1, . . . , p. Thus, at the point of minimum necessarily

α0

(
1 +A0

p∑
k=1

1

Ak

)
= 1, that is, α0 =

1

A0

( p∑
k=0

1

Ak

)−1
.

From this we find that

αk =
1

Ak

( s∑
k=0

1

Ak

)−1
, k = 0, 1, . . . , p,

and

Q(α1, . . . , αp) =

p∑
k=0

1

Ak

( p∑
k=0

1

Ak

)−2
=
( p∑
k=0

1

Ak

)−1
.

Equivalently, for all (α0, . . . , αp) ∈ Rp+1 such that α0 + · · ·+ αp = 1,

Q(α1, . . . , αp)
−1 ≥

p∑
k=0

A−1
k .

Hence, (13.1) follows by applying the above inequality with Ak = I(k)(X)I(p−k)(Y ). �

Proof of Theorem 1.6. The inequality (13.1) is invariant under all affine transforms
(X,Y ) → (c1, c2) + λ(X,Y ). Hence, when verifying (13.2) in the Gaussian case, it is suffi-

cient to consider X having a standard normal distribution with density ϕ. Since ϕ(k)(x) =
(−1)kHk(x)ϕ(x), the condition (13.2) is equivalent to the orthogonality of the Chebyshev-
Hermite polynomials in the Hilbert space L2(R, ϕ(x) dx). �

14. The Gamma distributions

Let the random variables Xn and Xm be independent and have the Gamma distributions with
n and m degrees of freedom (not necessarily integers), that is, with densities

f(x) =
xn−1

Γ(n)
e−x, g(x) =

xm−1

Γ(m)
e−x, x > 0.

As was noticed, I(p)(Xn) and I(p)(Xm) are finite if and only if min(n,m) > 2p.
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Let us derive the identities (2.1)-(2.3) and then check whether or not the inequality (13.1)
is true in the case p = 3. Since Xn +Xm has the Gamma distribution with n+m degrees of
freedom, this relation becomes

1

I(3)(Xn+m)
≥ 1

I(3)(Xn)
+

1

I(3)(Xm)

+
1

I(Xn)I(2)(Xm)
+

1

I(2)(Xn)I(Xm)
. (14.1)

For the computation of the Fisher-type information, we first note that, if u(x) = P (x) e−x

for a smooth function P , then

u′ = (P ′ − P ) e−x,

u′′ = (P ′′ − 2P ′ + P ) e−x, u′′′ = (P ′′′ − 3P ′′ + 3P ′ − P ) e−x,

so that

u′2 = (P ′2 + P 2 − 2P ′P ) e−x,

u′′2 = (P ′′2 + 4P ′2 − 4P ′′P ′ + P 2 + 2P ′′P − 4P ′P ) e−x,

u′′′2 = (P ′′′2 + 9P ′′2 + 9P ′2 − 6P ′′′P ′′ + 6P ′′′P ′ − 18P ′′P ′) e−x

+ (P 2 − 2P ′′′P + 6P ′′P − 6P ′P ) e−x.

From this, choosing P (x) = xn−1, we have

u′2

u
=

(P ′2
P

+ P − 2P ′
)
e−x =

(
(n− 1)2 xn−3 + xn−1 − 2(n− 1)xn−2

)
e−x

and ∫ ∞
0

u′2

u
dx = (n− 1)2 Γ(n− 2)− Γ(n) = Γ(n)

(n− 1

n− 2
− 1
)

= Γ(n)
1

n− 2
.

Hence

I(Xn) =
1

n− 2
, n ≥ 2. (14.2)

Similarly,

u′′2

u
=

(P ′′2
P

+ 4
P ′2

P
− 4

P ′′P ′

P
+ P + 2P ′′ − 4P ′

)
e−x

=
(

(n− 1)2(n− 2)2 xn−5 + 4(n− 1)2 xn−3 − 4 (n− 1)2(n− 2)xn−4

+ xn−1 + 2(n− 1)(n− 2)xn−3 − 4(n− 1)xn−2
)
e−x

and∫ ∞
0

u′′2

u
dx = (n− 1)2(n− 2)2 Γ(n− 4) + 4(n− 1)2 Γ(n− 2) + Γ(n)

− 4 (n− 1)2 (n− 2) Γ(n− 3) + 2(n− 1)(n− 2) Γ(n− 2)− 4(n− 1)Γ(n− 1)

= Γ(n)

(
(n− 1)(n− 2)

(n− 3)(n− 4)
− 1 + 4

n− 1

n− 2
− 4

n− 1

n− 3

)
= Γ(n)

(
(n− 1)(n− 2)

(n− 3)(n− 4)
− 1− 4(n− 1)

(n− 2)(n− 3)

)
.
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After simplifications, we arrive at

I(2)(Xn) =
2

(n− 3)(n− 4)
, n ≥ 4. (14.3)

Finally, write

u′′′2

u
=

(P ′′′2
P

+ 9
P ′′2

P
+ 9

P ′2

P
− 6

P ′′′P ′′

P
+ 6

P ′′′P ′

P
− 18

P ′′P ′

P

)
e−x

+ (P − 2P ′′′ + 6P ′′ − 6P ′) e−x

=
(

(n− 1)2(n− 2)2(n− 3)2 xn−7 + 9(n− 1)2(n− 2)2 xn−5

+ 9(n− 1)2 xn−3 − 6 (n− 1)2(n− 2)2(n− 3)xn−6

+ 6(n− 1)2(n− 2)(n− 3)xn−5 − 18(n− 1)2(n− 2)xn−4 + xn−1

− 2(n− 1)(n− 2)(n− 3)xn−4 + 6(n− 1)(n− 2)xn−3 − 6(n− 1)xn−2
)
e−x,

implying∫ ∞
0

u′′′2

u
dx = (n− 1)2(n− 2)2(n− 3)2 Γ(n− 6) + 9(n− 1)2(n− 2)2 Γ(n− 4)

+ 9(n− 1)2 Γ(n− 2)− 6 (n− 1)2(n− 2)2(n− 3) Γ(n− 5)

+ 6(n− 1)2(n− 2)(n− 3) Γ(n− 4)− 18 (n− 1)2(n− 2) Γ(n− 3)− Γ(n)

= Γ(n)

(
(n− 1)(n− 2)(n− 3)

(n− 4)(n− 5)(n− 6)
+ 9

(n− 1)(n− 2)

(n− 3)(n− 4)
+ 9

n− 1

n− 2

− 6
(n− 1)(n− 2)

(n− 4)(n− 5)
+ 6

n− 1

n− 4
− 18

n− 1

n− 3
− 1

)
.

Up to the factor Γ(n), this is simplified as

(n− 1)(n− 2)(n− 3)

(n− 4)(n− 5)(n− 6)
− 1 + 9

(n− 1)(2n2 − 11n+ 16)

(n− 2)(n− 3)(n− 4)
− 18

n− 1

(n− 4)(n− 5)
− 18

n− 1

n− 3

=
(n− 1)(n− 2)(n− 3)

(n− 4)(n− 5)(n− 6)
− 1 + 9

n(n− 1)

(n− 2)(n− 3)(n− 4)
− 18

n− 1

(n− 4)(n− 5)

=
(n− 1)(n− 2)(n− 3)

(n− 4)(n− 5)(n− 6)
− 1− 9

(n− 1)(n2 − 5n+ 12)

(n− 2)(n− 3)(n− 4)(n− 5)

= 3
3n2 − 21n+ 38

(n− 4)(n− 5)(n− 6)
− 9

(n− 1)(n2 − 5n+ 12)

(n− 2)(n− 3)(n− 4)(n− 5)

= 6
n2 + 13n+ 6

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
.

Hence

I(3)(Xn) =
6 (n2 + 13n+ 6)

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
, n ≥ 6. (14.4)

Suppose that m = n. Then (14.1) is simplified to

1

I(3)(X2n)
≥ 2

I(3)(Xn)
+

2

I(Xn)I(2)(Xn)
. (14.5)
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Using (14.2)-(14.4), the inequality (14.5) is equivalent to

(2n− 2)(2n− 3)(2n− 4)(2n− 5)(2n− 6)

6 (4n2 + 26n+ 6)
≥ (n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

3 (n2 + 13n+ 6)

+ 2(n− 2)
(n− 3)(n− 4)

2
,

that is,

2
(n− 1)(2n− 3)(n− 2)(2n− 5)(n− 3)

2n2 + 13n+ 3
≥ (n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

n2 + 13n+ 6
+ 3 (n− 2)(n− 3)(n− 4),

or what is even simpler

2
(n− 1)(2n− 3)(2n− 5)

2n2 + 13n+ 3
≥ (n− 4)(n− 5)(n− 6)

n2 + 13n+ 6
+ 3 (n− 4). (14.6)

But this is not true for the first admissible values of n which can be started with n = 6. This
can be seen in the next table:

LHS of (14.6) RHS of (14.6)

n = 6 70
17 ∼ 4.12 6

n = 7 99
16 ∼ 6.19 9 +

3

53
∼ 9.06

n = 8 2002
235 ∼ 8.52 12 +

4

29
∼ 12.14

n = 9 520
47 ∼ 11.06 15 +

5

17
∼ 15.29

n = 10 510
37 ∼ 13.78 18 +

30

59
∼ 18.51

Let us also look at the value of V1,2(fn) for the density fn of Xn and see that it is not
vanishing. From the formulas for the first derivatives of u = Pe−x with P (x) = xn−1, we find
that

u′u′′

u
=

P ′′P ′

P
− 2

P ′2

P
− P ′′ + 3P ′ − P

= (n− 1)2(n− 2)xn−4 − (n− 1)(3n− 4)xn−3 + 3(n− 1)xn−2 − xn−1,

so ∫ ∞
0

u′u′′

u
dx = (n− 1)2(n− 2) Γ(n− 3)− (n− 1)(3n− 4) Γ(n− 2) + 2 Γ(n)

= Γ(n)
(n− 1

n− 3
− 3n− 4

n− 2
+ 2
)

= Γ(n)
2

(n− 2)(n− 3)
.

It follows that

V1,2(fn) =
2

(n− 2)(n− 3)
> 0, n > 3.
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